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Repair of 06-(2-Chloroethyl)guanine
Mediates the Biological Effects of
Chloroethyn itrosoureas
by William J. Bodell,* Toshimitsu Aida,* Mitchel S. Berger,*
and Mark L. Rosenblum*

Chloroethylnitrosoureas (CENUs) are alkylating and crosslinking agents used for the treatment of
human cancer; they are both mutagenic and carcinogenic. We compared the levels of induction of sister
chromatid exchanges (SCEs) and the cytotoxicity of nitrosoureas that alkylate only with CENUs. CENUs
are 200-fold more cytotoxic and induce SCEs with 45-fold greater efficiency than agents that do not
crosslink; therefore, crosslinking is probably the most important molecular event that leads to cell death
and induction of SCEs.
The biological and biochemical properties of both human and rat brain tumor cells that are sensitive

or resistant to the cytotoxic effects ofCENUs have been investigated. CENUs induce SCEs in both sensitive
and resistant cells, but to induce similar levels of SCEs, resistant cells must be treated with a 5- to 14-
fold higher concentration of CENUs than are used to treat sensitive cells. Resistant cells have a higher
cellular level of o6 -methylguanine-DNA methyl transferase, increased repair of o6 -methylguanine, and
50%o fewer DNA interstrand crosslinks formed than do sensitive cells treated with the same concentration
of CENU. Based on these findings, we propose that cellular resistance to the cytotoxic effects of CENUs
is mediated by 06-methylguanine-DNA methyltransferase and that DNA repair may also modify the mu-
tagenic and carcinogenic properties of CENUs.

Introduction
2-Chloroethyl-l-nitrosoureas (CENUs), synthesized

first by Montgomery and co-workers, are cytotoxic
agents effective against a wide variety of in vitro and
in vivo tumor model systems (1,2). Currently these com-
pounds are being used clinically to treat a variety of
human tumors (3,4). In addition to their cytotoxic ef-
fects, these agents have been shown to be mutagenic
in both prokaryotic (5) and eukaryotic test systems (6)
and to induce tumors in rats (7,8). Consequently, in
addition to their therapeutic benefit they may pose a

genotoxic hazard to the treated patient (9,10). There-
fore it is very important that a clear understanding of
the biochemical processes mediating the cytotoxic, mu-

tagenic effects, and carcinogenic effects of these com-

pounds be obtained.
Under physiological conditions, CENUS are hydro-

lyzed to reactive species that alkylate cellular DNA,
RNA, and proteins (11). Some of the monoalkylation
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products may form DNA interstrand crosslinks in sub-
sequent reactions (12,13). DNA interstrand crosslink
formation is thought to cause the cytotoxic effects of
CENUs (14-16). One of the crosslinks formed in DNA
treated with CENUs has been identified as [1-(N-3-
deoxycytidyl)-2-(N-1-deoxyguanosinyl)ethane] (13).
Tong and Ludlum (13) postulated that the formation of
06-2-chloroethylguanine is the initial alkylation event
that leads to the subsequent formation of this DNA
crosslink. This hypothesis is supported by the obser-
vation that cells that can remove 06-methylguanine
(O6MeG) from their DNA are resistant to the cytotoxic
effects of CENUs and have fewer DNA interstrand
crosslinks formed after treatment with CENUs (14-16).
The enzyme that repairs 06-alkylguanine in DNA is

06-methylguanine DNA methyltransferase (17-19), a
receptor protein that catalyzes the dealkylation of O6-
alkylguanine in DNA to produce the alkylated protein
and guanine (17-19). The transferase is inactivated after
a single event (17-19). Human tumor cells have been
classified as methyl excision repair-positive (Mex+) or
methyl excision repair-negative (Mex-) based on their
capability to remove 06-MeG from DNA (20-23). Mex+
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cells have 20,000-60,000 transferase molecules per cell
and Mex- cells about 1200 molecules per cell (20-23).
Because the maximum number of DNA interstrand
crosslinks are formed 6 hr after treatment with CENUs
(12), in Mex+ cells there is adequate time for repair of
06-2-chlorethylguanine adducts before they form DNA
interstrand crosslinks. These results suggest that re-
pair of 06-alkylguanine derivatives in DNA and inhi-
bition of DNA crosslink formation are related events
and may be important factors in human tumor cell re-
sistance to CENUs. Increased repair of DNA adducts
that can form DNA crosslinks or repair of DNA cross-
links after they are formed have been implicated as
major factors in the resistance of cells to the cytotoxic
effects a variety of DNA crosslinking agents (14-16,24-
27).

Resistance of cells to the cytotoxic effects of chem-
otherapeutic agents appears to be one cause of the in-
effectiveness ofchemotherapy for human cancer (28,29).
Approximately 60% ofhuman brain tumors are resistant
to the therapeutic effects of BCNU (30,31). Studies of
the properties of cell lines that are resistant to chem-
otherapeutic agents may help define more fully the mo-
lecular mechanisms involved in cellular resistance.
Currently a number ofrodent derived cell lines are used
to test the effects of chemotherapeutic agents. One of
these, 9L, is a well characterized gliosarcoma cell line
that has been used for both in vivo and in vitro cyto-
toxicity studies (32). CENU-resistant sublines have been
isolated from the 9L cell line (29). We have begun a
study of the mechanisms of resistance to CENUs using
one of these sublines, 9L-2, and cell lines derived from
human brain tumors (33).

Cell Killing and SCE Induction
Caused by CENUs

The cytotoxic effect of nitrosoureas have been inves-
tigated by using a colony-forming assay, which has been
described in detail (14,33). For our studies we have
compared the cytotoxic effects in 9L cells treated with
the alkylating agent 1-ethyl-1-nitrosourea (ENU) and
3-(4-amino)-2-methyl-5-pyrimidinyl-methyl-1-(2-chloro-
ethyl)-1-nitrosourea (ACNU), an agent that both alky-
lates and crosslinks DNA. The structures of these nitro-
soureas are shown in Figure 1. Survival plots for 9L cells
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FIGURE 1. Structures of the nitrosoureas used in these studies.

treated with either ACNU or ENU for 1 hr are shown
in Figure 2. To produce a 1 log cell kill required treating
9L cells with either 5 mM ENU or 25 FiM ACNU. There-
fore, the DNA crosslinking agent ACNU kills cells 200-
fold more efficiently than the noncrosslinking agent ENU.
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FIGURE 2. The survival of 9L cells treated for 1 hr with either (A)
ACNU or (0) ENU.

We compared the relative efficiency with which ACNU
and ENU induce sister chromatid exchanges (SCEs).
SCEs are reciprocal exchanges formed between sister
chromatids during DNA replication (34-36), and a cor-
relation between induction of SCEs and cytotoxicity has
been reported (14,37,38). Induction of SCEs in 9L cells
was measured by using the procedure of Perry and Wolff
(39).
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FIGURE 3. The induction of SCEs in 9L cells caused by treatment
with either (A) ACNU or (B) ENU. The frequency of SCE in-
duction was calculated by subtracting the number of SCEs in cells
treated with 10 ,M Budr alone (11-13 SCEs/metaphase). The dose
response curves for SCE induction were calculated by linear
regression analysis using the equation, y = Ax, where y is the
number of SCEs induced, A is the slope of the line, and x is the
dose of each agent. Each symbol represents the mean value for a
single experiment.
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Treatment of 9L cells with 2 ,uM ACNU induced ap-
proximately 30 SCEs/metaphase (Fig. 3A). A linear
dose-response relationship was found, and the slope of
the dose response curve was calculated to be 15.8 SCEs/
,uM ACNU by linear regression analysis. ENU treat-
ment also produced a linear dose response curve (Fig.
3B), the slope of which was 0.11 SCEs/,uM ENU. Thus,
based on the ratio of the slopes for the dose-response
curves, ACNU is 143-fold more efficient at inducing
SCEs than is ENU.
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FIGURE 4. The alkylation of 9L cells DNA after treatment with (0)
14C-ENU or (A) 14C-ACNU for 1 hr.

The differential induction of SCEs caused by ENU
and ACNU may be the result of different levels of al-
kylation of cellular DNA, which may be mediated by
different rates of cellular uptake or hydrolysis for the
two compounds. Alkylation of cellular DNA with both
14C-ENU and 14C-ACNU was linear over the concen-
tration ranges studied (Fig. 4). The slopes of the curves
for the alkylation reaction are 135.7 ,umole alkylation/
mole DNA/mM ACNU and 42.0 pumole alkylation/mole
DNA/mM ENU. Therefore, at equimolar doses ACNU
alkylates DNA by a factor of approximately 3.2-fold
more than ENU.
Using linear regression analysis we calculated the

amount of ACNU or ENU that alkylates DNA at the
doses required to induce 30 SCEs. Approximately 0.25
,umole of ACNU alkylation product per mole of DNA
is required to induce 30 SCEs, while 11.4 ,umole of al-
kylation product of ENU per mole of DNA is required
to induce 30 SCEs. Therefore, after correction for the
extent of alkylation of DNA, ACNU is 45-fold more
efficient at inducing SCEs than is ENU.
Our studies indicate that treatment of cells with

ACNU is 200-fold more cytotoxic and 45-fold more ef-
ficient at inducing SCEs than treatment with ENU. The
identification of DNA alkylation produces in human fi-
broblasts and fetal rat brain cells treated with ENU
has been reported (40,41). The alkylation products iden-
tified are listed in Table 1. The DNA alkylation products
formed by CENU treatment of purified DNA have been
extensively investigated (13,42-46). Even though the
alkylation products in cells treated with CENUs have
not been quantitated, the alkylation products of purified

Table 1. Products of the reaction of BCNU and ENU with DNA.

Percent
Products of total

ENU Ethylphosphotriesters 56 ± 4
06-Ethyldeoxyguanosine 9.2 ± 1.8
04-Ethylthymidine 2.1 ± 0.8
02-Ethylthymidine 7.1 ± 1.5
02-Ethyldeoxycytidine 4.5 ± 2
7-Ethyldeoxyguanosine 13.6 ± 1
3-Ethyldeoxyadenosine 4.5 ± 0.6

BCNU Monoadducts
Phosphotriesters
06-(2-Hydroxyethyl)deoxyguanosine
7-(2-Hydroxyethyl)deoxyguanosine
7-(2-Chloroethyl)deoxyguanosine
3-(2-Hydroxyethyl)deoxycytidine
3-N4-Ethanodeoxycytidine

Crosslinks
1,2-(Dideoxyguanosin-7-yl)ethane
1-(N-3-Deoxycytidyl)-2-(N-1-
deoxyguanosinyl)ethane

DNA are a good model for the reactions that occur when
cells are treated with CENUs. The alkylation products
of purified DNA treated with CENUs are also listed in
Table 1.
The alkylation products formed by ENU and CENUs

are very similar. The primary difference is that chloro-
ethyl product(s) of CENUs can crosslink bases on the
same or opposite strands in subsequent reactions
(13,44,45). It has been suggested that the crosslinked
base 1,2-(dideoxyguanosine-7-yl)ethane is a DNA in-
trastrand crosslink (44) and that 1-(N-3-deoxycytidyl)-
2-(N-1-deoxyguanosinyl)ethane is a DNA interstrand
crosslink (13,45). Thus, the 45-fold differential induction
of SCEs and 200-fold increased cytotoxicity caused by
ACNU is probably the result ofDNA interstrand cross-
link formation.
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FIGURE 5. Survival curves for (0) 9L and (A) 9L -2 cells treated
for 1 hr with BCNU. Each symbol represents the mean value for
a single experiment.
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FIGURE 6. Induction of SCEs in (@) 9L and (0) 9L - 2 cells treated with various doses of BCNU: (A) Doses of BCNU 0-10 FM; (B) dose of
BCNU 0-55 ,uM.

Cellular Resistance
Cellular resistance to the cytotoxic effects of CENUs

appears to be one of the major factors for the ineffec-
tiveness of CENUs in the treatment of human cancer.
To study this process in detail, we isolated sublines of
9L by high dose treatment of rats bearing the intra-
cerebral 9L tumor with 1,3 bis(2-chloroethyl)-1-nitro-
sourea (BCNU) (29). Established cell lines from human
brain tumors were used also.

Survival plots for 9L and 9L-2 cells treated with var-
ious concentrations of the DNA crosslinking agent
BCNU are shown in Figure 5. 9L-2 cells are markedly
more resistant to the cytotoxic effects of BCNU than
are 9L cells; 90% of the 9L cells cannot form colonies
after a 1-hr treatment with 30 ,uM of BCNU. In con-
trast, 9L-2 cells must be treated with 120 ,uM of BCNU
to achieve the same level of cell kill. Thus 9L-2 cells are
at least 4-fold more resistant to the cytotoxic effects of
BCNU than are 9L cells.
As found for ACNU, BCNU efficiently induces SCEs

in 9L cells; the dose-response curve is linear (Fig. 6A)
with a slope of 13.5 SCEs/,uM BCNU. However, very
few SCEs are induced in 9L-2 cells treated over the
same dose range (Fig. 6A). To induce similar levels of

SCEs in both cell lines, 9L-2 cells have to be treated
with a 10-fold higher dose ofBCNU (Fig. 6B). The slope
of the dose-response curve for SCE induction on 9L-2
cells is 0.93 SCEs/4aM BCNU. As calculated by the ratio
of the slopes of the dose-response plots, 9L-2 cells are
14-fold less susceptible to the induction of SCEs than
are 9L cells.
Dose-response curves forBCNU treatment in the cell

lines derived from three human brain tumors are pre-
sented in Figure 7. HU-126 cells are very sensitive to
the cytotoxic effects of BCNU compared to either HU-
188 or HU-253-2 cells. The induction of SCEs by BCNU
treatment has also been measured in these human cell
lines (Fig. 7). Because the number of chromosomes per
metaphase is variable from cell line to cell line, we have
to make the comparison on the basis of SCEs per chro-
mosome. The slope of the dose-response curves for
BCNU treatment in HU-126 cells is 0.128 SCEs/pRM
BCNU for HU-188, 0.009 SCEs/,uM BCNU, and for
HU253-2 cells 0.023 SCEs/,uM BCNU. As a ratio of
their slopes for the dose-response curve HU-126 cells
are 5- to 14-fold more sensitive to the induction of SCEs
than are either HU-188 or HU-253-2 cells. Thus, similar
results are obtained with sensitive and resistant tumor
cells obtained either from rodent or human cell lines.
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FIGURE 7. Survival curves and induction of SCEs after BCNU treatment in (O) HU-126, (*) HU-188, or (A) HU-253-2 cells. Survival curves
were obtained after a 2 hr treatment with BCNU, and the SCE induction curves after a 1-hr treatment with BCNU.
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Table 2. Analysis of DNA methylation products in cells after a 1 hr treatment with 'H-MNU.

Methylated products, ,umole methylated purine/ Ratio
mole DNA 06-MeG

Cell type N-3-MeA N-7-MeG 06-MeG N-7 MeG
9L E-1 1.2 18.3 2.3 0.125

E-2 1.8 19.2 2.2 0.114
E-3 1.1 21.6 2.5 0.115

9L-2 E-1 1.8 22.9 2.3 0.100
E-2 1.3 21.4 1.9 0.088

HU-126 E-1 1.7 44.2 5.4 0.122
E-2 2.15 39.9 5.6 0.141

HU-188 0.83 11.1 0.76 0.067

HU-253-2 E-1 3.3 42.0 2.1 0.05
E-2 0.75 13.2 0.48 0.036

Table 3. 06-Methylguanine-DNA-methyl transferase activity
of human brain tumor cells.

06-MeG demethylated,
Cell line pmole/mg protein
HU-126 0.07
HU-188 0.37
HU-253-2 0.22

DNA Repair and Resistant Cells
Recently published data (14-16) suggest that a rela-

tionship exists between the repair of 06-alkylguanine
derivatives and cellular resistance to CENUs in human
tumor cells. We have examined the possibility that a
similar mechanism is responsible for the observed re-
sistance of 9L-2, HU-188, and HU-253-2 cells to SCE
induction and cytotoxicity. For our studies we treated
these cells with 100 ,uM 3H-MNU, a dose of MNU that
does not saturate the methyltransferase activity in Mex+
cells (21). The extent of methylation of DNA in all of
the cell lines after a 1-hr treatment with 100 ,uM 3H-
MNU was very similar (Table 2). The formation of N-
3-MeA and N-7-MeG was also the same in these cell
lines. The 06-MeG/N-7-MeG ratio in 9L and HU-126
cells was similar to values reported for other cell lines
that do not repair 06-MeG (20). In contrast, the 06-MeG/
N-7 MeG ratio in 9L-2 cells was 0.094, approximately
20% lower than in 9L. In HU-188, and HU-253-2 cells
the 06-MeG/N-7 MeG ratio was 0.067, and 0.043, re-

spectively. Because 06-MeG is a stable alkylation prod-
uct of DNA, the lower 06-MeG/N-7-MeG ratio in 9L-2,
HU-188, and HU-253-2 cells represents repair of O6-
MeG by these cells during the 1-hr treatment period.
These results indicate that cells resistant to CENUs

have an increased capacity for removal of 06-alkyl-
guanine derivatives from DNA than do the correspond-
ing sensitive cells. Comparison of the results in 9L-2,
HU-188, and HU-253-2 show that 06-MeG was removed
to a greater extent during the 1-hr interval in the re-
sistant human lines compared to 9L-2. This may indicate
that resistant human cells have a higher level of 06-
methylguanine DNA methyltransferase than resistant
rodent cells. More extensive studies of resistant human
and rodent cell lines must be conducted before a defin-
itive conclusion can be drawn.
We have measured the level of 06-methylguanine DNA

methyl transferase activity in some of our human cell
lines. For this assay, cellular extracts of sonicated cells
are incubated at 37°C for 60 min with DNA containing
1 pM of 06-MeG. After the incubation period, samples
are acid hydrolyzed, the alkylation products are sepa-
rated by HPLC, and the residual 06-MeG is determined
by liquid scintillation counting. HU-126 cells have low
levels of methyltransferase activity (Table 3). In con-
trast, HU-188 and HU-253-2 cells have 3- to 5-fold higher
levels of this enzyme. These results correlate very well
with the removal of 06-MeG in the human cell lines
treated with 3H-MNU (Table 2).

Because results of earlier studies indicate that DNA
interstrand crosslinks formed after CENU treatment
are responsible for both cell killing and SCE induction,
we compared the number ofDNA interstrand crosslinks
formed in sensitive and resistant cells after BCNU
treatment. We used the technique of alkaline elution
developed by Kohn and co-workers (1 7) to estimate the
number ofinterstrand crosslinks formed in treated cells.
The relative number of DNA interstrand crosslinks
formed in cells after treatment with either 50 or 100
,uM BCNU for 1 hr, followed by a 6-hr incubation period,

Table 4. Formation of DNA interstrand crosslinks in cells treated for 1 hr with BCNU.a

Crosslink index x 103
BCNU treatment 9L 9L-2 HU-126 HU-188 HU-253-2
50 ,LM 109 ± 15 50 ± 10 37 8 24
100 ,uM 214 ± 19 96 ± 30 80 30 57
aThe number of proteinase K-resistant DNA crosslinks was determined as described (14).
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FIGURE 8. Proposed molecular mechanism for the mediation of SCE
induction and cell kill by 06-methylguanine DNA methyltransferase.

are listed in Table 3. The number of DNA interstrand
crosslinks formed in the resistant cells 9L-2, HU-188,
and HU-252-2 are approximately 50% that of the cor-
responding sensitive cell lines 9L and HU-126.
A possible mechanism through which cellular resist-

ance to the cytotoxic effects ofCENUs may be mediated
by DNA repair is shown in Figure 8. Resistant cells
have an increased capacity to remove 06-(2-chloro-
ethyl)guanine in DNA. Enzymatic removal of this al-
kylation product will reduce DNA crosslink formation
and therefore should reduce both SCE induction and
the cytotoxic effect of CENU treatment. In contrast,
sensitive cells have a very poor capacity to remove 06_

(2-chloroethyl)guanine derivatives. Therefore, in these
cells, DNA crosslink formation will occur that leads to
SCE formation and cell kill. In agreement with this
hypothesis, Robbins et al. (48) and Brent (49) have re-
ported that 06-methylguanine-DNA methyltransferase
removes a chloroethylation product that forms DNA
crosslinks. Our results showing that there are fewer
DNA crosslinks formed in cells that actively remove O6
methylguanine is consistent with this mechanism.

Mutagenic and Carcinogenic Effects
of CENUs
Methyl and ethyl nitrosourea have been shown to be

potent mutagens in a variety of test systems (50). Re-
cently, the mutagenicity of CENUs has been investi-
gated. These compounds have been shown to induce
mutations in both prokaryotic (5) and eukaryotic test
systems (6). The molecular mechanism for the muta-
genic effect of alkyl nitrosoureas has been attributed to
their capacity to form the 0-alkylpurine and 0-alkyl-
pyrimidine derivatives listed in Table 1. These alkyla-
tion products have been shown to cause misincorporation
of non-Watson-Crick base pairing partners in in vitro
systems (51-54). CENUs have been shown to form O6-
(2-hydroxyethyl)deoxyguanosineand3,N4-ethanodeoxy-
cytidine in DNA. These alkylation products probably
induce mutations by a mechanism that leads to misin-
corporation.
CENUs have been shown to induce tumors, primarily

lung tumors, leukemias, and lymphosarcomas, when ad-

ministered to either mice or rats (7,8). Patients
undergoing chemotherapy receive doses up to 1.5 g/m2.
Clinical evidence has been presented that treatment of
patients with CENUs may cause secondary leukemias
(9,10).
There is very good evidence that DNA repair plays

a major role in organ-specific carcinogenesis. Investi-
gations with nitrosoureas and nitrosoamines have shown
that the cellular capacity to remove 06-alkylguanine and
04-alkyl thymidine is inversely related to the suscep-
tibility of the organ to the tumorigenic effect of these
compounds (55-60). Therefore the cellular capacity to
remove the 06-alkylguanine derivatives produced by
CENU treatment should modify the carcinogenic ef-
fects of these agents. Cellular repair of 06-alkylguanine
derivatives formed by CENUs may have two major
effects: it prevents the formation of a DNA crosslink
and hence reduces the cytotoxic effect of CENU treat-
ment, and it removes the promutagenic base and re-
duces the carcinogenic effect of the compounds.
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